The 6th International Workshop on Parallel and Distributed Computing for Large Scale Machine Learning and Big Data Analytics

May 29 or June 2, 2017
Orlando, Florida, USA

In Conjunction with 31st IEEE International Parallel & Distributed Processing Symposium
May 29-June 2, 2017
Buena Vista Palace Hotel
Orlando, Florida USA
IPDPS 2017 logo

Call for Papers

Scaling up machine-learning (ML), data mining (DM) and reasoning algorithms from Artificial Intelligence (AI) for massive datasets is a major technical challenge in the times of "Big Data". The past ten years has seen the rise of multi-core and GPU based computing. In distributed computing, several frameworks such as Mahout, GraphLab and Spark continue to appear to facilitate scaling up ML/DM/AI algorithms using higher levels of abstraction. We invite novel works that advance the trio-fields of ML/DM/AI through development of scalable algorithms or computing frameworks. Ideal submissions would be characterized as scaling up X on Y, where potential choices for X and Y are provided below.  

Scaling up

On

PDF Flyer

Journal publication

Selected papers from the workshop will be published in a Special Issue of Future Generation Computer Systems, Elsevier's International Journal of eScience. Special Issue papers will undergo additional review.

Awards

Best Paper Award: The program committee will nominate a paper for the Best Paper award. In past years, the Best Paper award included a cash prize. Stay tuned for this year!

Travel awards:Students with accepted papers have a chance to apply for a travel award. Please find details on the IEEE IPDPS web page.

Organization

Technical Program Committee

Important Dates

Paper Guidelines

Submitted manuscripts should be upto 10 single-spaced double-column pages using 10-point size font on 8.5x11 inch pages (IEEE conference style), including figures, tables, and references. Format requirements are posted on the IEEE IPDPS web page.

All submissions must be uploaded electronically at https://easychair.org/conferences/?conf=parlearning2017

Past workshops